
Java Packaging for Developers
(Get someone to package your Java application)

Red Hat

Author: Stanislav Ochotnický
sochotnicky@redhat.com

Date: 5th February 2011

Abstract

Basic guidelines for developers to make it easier for their
applications to get into Linux distributions. Handling source
releases, build systems and dependencies and making
packagers happy in the process.

Main audience: Java developers with little packaging
experience.

Overview

Linux distributions

Take source code

Build binary packages

Test

Fix

Release packages

Thanks to Thierry Carrez <thierry (at) openstack (dot) com>

for providing next three introductory slides and several ideas from:

http://fnords.wordpress.com/2010/09/24/the-real-problem-with-java-in-linux-distros/

http://fnords.wordpress.com/2010/09/24/the-real-problem-with-java-in-linux-distros/

Overview

Java upstreams

Write source code

Build binary bundle with deps

Test

Fix

Release binary bundle

Overview

Solutions

Package binary bundle

Package all versions of all libs

Force software to use our versions of libs

Overview

Solutions

Package binary bundle

Package all versions of all libs

Force software to use our versions of libs

Overview

Solutions

Package binary bundle

Package all versions of all libs

Force software to use our versions of libs

General Tips

Source releases

Make complete source releases with build scripts

Results of no source releases
latest release doesn't generate javadocs and there is no source

tarball with pom.xml or ant build file

#

svn export -r86 http://atinject.googlecode.com/svn/trunk atinject-1

tar caf atinject-1.tar.xz atinject-1

General Tips

Dependencies

Try to pick dependencies from major projects

Don’t add another xml parser dep just because...

Do not patch your dependencies.

Know where your deps are coming from

General Tips

Z, oh where are thou?

What are micro revisions?
Z in X.Y.Z version string

Micro revisions are smallest released changes

Usually contain only bugfixes

ALWAYS backward compatible

No new dependencies

Java ecosystem understanding of Z in X.Y.Z

Anything goes (for a LOT of projects)

Binary compatibility does not matter in Java

General Tips

Z, oh where are thou? (cont.)

Example Maven update from 3.0 to 3.0.1

Required Aether update from 1.7 to 1.8

Aether had new dependency on async-http-client

Async-http-client added netty, jetty 7.x, etc

Fortunately only netty was runtime dependency

How to do it?
Z update = only backward-compatible bugfixes

No changes to dependencies

Check required deps for new dependencies

Buildsystem specific

How to use Ant properly?

Short answer?

DON’T

Long answer

Try apache-ivy instead of bundling dependencies

Use properties to reuse definitions

Place all dependencies into one directory

Use name-version.jar for dependencies

Don’t be overly smart when writing build.xml

Buildsystem specific

Advantages of Maven over Ant

For developers

Declarative instead of descriptive

Project metadata information in one place

Good integration with other tools

Support for running Ant for parts of build

For packagers

Declarative instead of descriptive

Clear dependencies including their versions

No bundling of dependencies

Problems are the same in all projects

Buildsystem specific

Not easy to make a mess with Maven, but...

Sometimes too easy to add new dependency

Careful with
maven-dependency-plugin:copy-dependencies
Use maven-bundle-plugin carefully

Useful for metadata manipulations
Export-Package can include dependencies in resulting jar
This is practically static linking

Please don’t use maven-shade-plugin
Relocates package classes into different package
Hidden static linking
Impossible to reveal just from contents of jar

Buildsystem specific

OSGI side of things

Make your jars OSGI-enabled:

...

<packaging>bundle</packaging>

...

<build>

<plugins>

<plugin>

<groupId>org.apache.felix</groupId>

<artifactId>maven-bundle-plugin</artifactId>

<extensions>true</extensions>

</plugin>

</plugins>

</build>

...

Buildsystem specific

Using maven-assembly-plugin to release source

<build>

<plugins>

...

<plugin>

<artifactId>maven-assembly-plugin</artifactId>

<configuration>

<descriptorRefs>

<descriptorRef>project</descriptorRef>

</descriptorRefs>

</configuration>

<executions>

<execution>

<id>make-assembly</id>

<phase>package</phase>

<goals> <goal>single</goal> </goals>

</execution>

</executions>

</plugin>

...

</plugins>

</build>

Buildsystem specific

maven-shade-plugin in action

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<configuration>

<relocations>

<relocation>

<pattern>org.objectweb.asm</pattern>

<shadedPattern>org.packager</shadedPattern>

</relocation>

</relocations>

</configuration>

</plugin>

Buildsystem specific

maven-shade-plugin in action (cont.)

Contents of resulting jar

META-INF/

META-INF/MANIFEST.MF

META-INF/maven/

META-INF/maven/org.packager/

META-INF/maven/org.packager/Pack/

META-INF/maven/org.packager/Pack/pom.properties

META-INF/maven/org.packager/Pack/pom.xml

org/

org/packager/

org/packager/signature/

org/packager/signature/SignatureReader.class

org/packager/signature/SignatureVisitor.class

org/packager/signature/SignatureWriter.class

org/packager/Pack.class

Can you tell where is signature sub-package coming from?

Buildsystem specific

maven-bundle-plugin in action (cont.)

<plugin>

<groupId>org.apache.felix</groupId>

<artifactId>maven-bundle-plugin</artifactId>

<extensions>true</extensions>

<configuration>

<instructions>

<Export-Package>org.objectweb.asm.signature</Export-Package>

</instructions>

</configuration>

</plugin>

Buildsystem specific

maven-bundle-plugin in action (cont.)

Contents of resulting jar

META-INF/MANIFEST.MF

META-INF/

META-INF/maven/

META-INF/maven/org.packager/

META-INF/maven/org.packager/Pack/

META-INF/maven/org.packager/Pack/pom.properties

META-INF/maven/org.packager/Pack/pom.xml

org/

org/objectweb/

org/objectweb/asm/

org/objectweb/asm/signature/

org/objectweb/asm/signature/SignatureReader.class

org/objectweb/asm/signature/SignatureVisitor.class

org/objectweb/asm/signature/SignatureWriter.class

org/packager/

org/packager/Pack.class

Buildsystem specific

Summary

Please
Provide source releases with build scripts

Do not use niche libraries for dependencies

Stable, bugfix-only, no-new-deps micro releases

Try apache-ivy

Ship pom.xml even if you build with ant

Don’t be too smart with build.xml

Careful with certain maven plugins

The end.

Thanks for listening.

	Overview
	General Tips
	Buildsystem specific

