
(R)evolution of Java packaging in GNU/Linux
FOSDEM 2013

Authors:
Stanislav Ochotnický sochotnicky@redhat.com
Miko laj Izdebski mizdebsk@redhat.com

Date: 2nd February 2013

Abstract

Packaging Java in GNU/Linux distributions is complicated by
incomplete tooling. Over past 2 years, tooling and guidelines
for packaging Java have changed in Fedora considerably. What
used to be a 1000 line build script can soon become 100 lines
of mostly metadata. We present new bleeding edge
distribution-neutral tooling for packaging Maven artifacts.

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

Just our introduction. We have been working in Java/Maven packaging

for Fedora and Red Hat Enterprise Linux for several years. We like to

make things simple(r).

Why is there a problem in the first place?

Sort of NIH syndrome everywhere
Each Java package a unique set of problems

Ant, Maven, Gradle, Ivy, 20 XML parser dependencies

Each Linux distribution a unique set of problems
RPM, APT, Portage, FHS, exceptions to FHS

Can we do better?
Conventions
Tooling
Sharing
Caring2

0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

Overview

Why is there a problem in the first place?

NIH - distributions, java developers, everyone is guilty. If we manage to

provide a proper tooling a lot of things will get better as a result

eventually.

First things first

Maven is the only widely-used Java build tool with
any resemblance of conventions

RPM Maven
Name <artifactId/>

Version <version/>
(Build)Requires <dependencies/>

License <licenses/>
%summary <name/>

%description <description/>
%prep <build/>
%build <build/>
%install <build/>

... ...

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

Overview

First things first

Most things are very similar. But there are exceptions:

• Not all metadata is 1:1

• No exclusions in RPMs

• No equivalent of Maven scope in RPMs

• Parent pom inheritance missing

• Optional dependencies

The problem with other build systems is that there is no way to

standardize parsing and handling of their metadata. They can be spread

in many places.

Maven modifications in Fedora

Custom resolver used in local mode

Verification of models turned off in local mode

Fix test scope dependency resolving when tests
are disabled
Approximate idea is:

Create a file that will map GAV to jars on filesystem
Maven loads this file when running in local mode
Return artifacts based on this mapping2

0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

History lessons

Maven modifications in Fedora

Maven and Java stack largely based on JPP. It is our heritage, but we are

changing it bit by bit. Our patches are not very welcome by the

upstream, but we are getting rid of them.

Getting rid of cruft

We had this in our spec files

Requires(post): jpackage-utils

Requires(postun): jpackage-utils

%post

%update_maven_depmap

%postun

%update_maven_depmap

Now we have

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

History lessons

Getting rid of cruft

These snippets used to produce one big mapping file out of small xml-like

files created by every Maven package. Maven then read this one big file.

We moved to reading those small files and with this we didn’t have to

create the big file any more. Performance hit is negligible.

Fixing manual mapping for GAVs

Mapping between GAV and jar was manual

%add_to_maven_depmap org.apache.commons commons-io 2.5 JPP commons-io

Better way with the same result

%add_maven_depmap JPP-commons-io.pom commons-io.jar

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

History lessons

Fixing manual mapping for GAVs

This has been achieved by reading metadata from pom.xml instead of

relying on manual inspection. We managed to get rid of a lot of errors

this way

Modifications of pom.xml

Old style patching

--- ./surefire-providers/pom.xml.sav

+++ ./surefire-providers/pom.xml

@@ -30,8 +30,10 @@

<name>SureFire Providers</name>

<modules>

<module>surefire-junit</module>

+<!--

<module>surefire-junit4</module>

<module>surefire-testng</module>

+-->

</modules>

<dependencies>

<dependency>

New macros

%pom_disable_module surefire-junit4

%pom_disable_module surefire-testng

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

History lessons

Modifications of pom.xml

There are other macros:

• adding/removing dependencies

• modifying plugins

• injecting/removing any xml parts

All in all they simplify updates and are more reliable than patches since

they know about XML structure

File lists

Manual listing

%files

%defattr(-,root,root,-)

%doc LICENSE.txt NOTICE.txt RELEASE-NOTES.txt

%{_javadir}/*.jar

%{_mavenpomdir}/JPP-%{short_name}.pom

%{_mavendepmapfragdir}/*

Automated way

%files -f .mfiles

%doc LICENSE.txt NOTICE.txt RELEASE-NOTES.txt

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

History lessons

File lists

These file lists are relatively limited in that they only handle files that

%add maven depmap macro knows about: poms, jars, mapping files.

They still simplify spec files considerably

Current state

Simple issues were solved
Most time-consuming tasks are still manual

keeping dependencies up-to-date
installing multi-artifact packages
maintenance of multiple subpackages

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

History lessons

Current state

Maintenance of multiple subpackages is always a burden. Dependencies

get more complicated, spec files are much longer and their updates more

error-prone.

Plexus-compiler example

Eclipse JDT

backend

javac

backend

Jikes

backend

Eclipse

Platform

...

some

package

depends on

depends on

plexus-compiler

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

History lessons

Plexus-compiler example

Maintenance of multiple subpackages is burdensome so it’s not done

usually. This causes issues when one of the artifacts pulls in big

dependency tree. This is a recurring problem we need to solve. One of

more recent examples was Freemind which pulled in big part of

eclipse-platform in Fedora.

A tool is needed

Simple usage

Powerfull

Convention over configuration

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

A tool is needed

As shown in previous exmaples, currect situation of packaging of Maven

artifacts in Fedora requires a new tool. A tool that would be simple to

use, doing most of the tasks for users. It should be powerfull enough to

allow migration of all possible spec files to the new style of packaging,

not only some of them. It should also utilize the convention over

configuration rule so that most simple packages have the simpliest specx

files possible, but more complicated cases can be handled with

customizations.

Structure of XMvn

Portable part
pure Java
integration with Maven
highly configurable
uses unmodified Maven

Distribution-specific part
macros and shell scripts
integration with package manager
follows distribution standards
automatic dependency generation2

0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Structure of XMvn

XMvn consists of two parts, portable part and distribution-specific part.
The first one is written in pure Java. It is a set of extensions to
(otherwise unmodified) Apache Maven and is licensed in consistent way
with Maven (the license is Apache License version 2.0). The portable
part has many configuration options and it tries not to rely on any
distribution-specific characteristics, so it should be possible to use it on
any GNU/Linux or Unix distribution.

The distribution-specific part forms an interface between the way how

packages are built in distributions and the portable part. For this part is

implemented only for Fedora, but different layers could be created for

different distributions, also those not based on RPM. Among other things

this part is responsible for keeping distribution-specific defaults and

automatic dependencies are generated.

Preparation for the build

Patching POM files
%pom_add_dep org.apache.commons:commons-io

%pom_disable_module submod-foo

Launching build
%mvn_file : %{name}

%mvn_build

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Preparation for the build

Before the actual build is started POM files are patched using new

Macros if needed, but usually that step is not required. Next the build

process is configured using simple macros and the portable part of XMvn

is launched.

During build

Create build plan

Read package metadata
Call Maven to build the package

compile sources
run tests
generate javadocs

Generate metadata

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

During build

During the build the configuration is read and the build plan is created.

XML metadatata of all Maven packages installed in the file system is

read and Maven is invoked to perform the build. After Maven completes

the build metadata of currently built packages is generated.

After the build

Installation
%mvn_install

Enumerating files
%files -f .mfiles

%files javadoc -f .mfiles-javadoc

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

After the build

After build is finished all relevant files are installed into the build root and

lists of installed files are created. These lists are then used to let RPM

know which file belongs to which package.

Example spec file (part 1)
Name: maven-shared-incremental

Version: 1.0

Release: 1%{?dist}

Summary: Maven Incremental Build support utilities

License: ASL 2.0

URL: http://maven.apache.org/shared/maven-shared-incremental/

Source0: http://repo1.maven.org/maven2/org/apache/maven/[...]

BuildArch: noarch

BuildRequires: maven-local

BuildRequires: plexus-component-annotations

BuildRequires: plexus-component-api

%description

Various utility classes and plexus components for supporting

incremental build functionality in maven plugins.

%package javadoc

Summary: API documentation for %{name}

%description javadoc

This package provides %{summary}.

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

A typical RPM spec file for package built using XMvn consists of

standard package metadata (name, version, etc.), there are not even

requires, only build requires.

Example spec file (part 2)
%prep

%setup -q

%build

%mvn_build

%install

%mvn_install

%files -f .mfiles

%doc LICENSE NOTICE

%dir %{_javadir}/%{name}

%files javadoc -f .mfiles-javadoc

%doc LICENSE NOTICE

%changelog

* Wed Jan 23 2013 Mikolaj Izdebski <mizdebsk@redhat.com> - 1.0-1

- Initial packaging2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Build and install sections are usually very simple, possiblt single-line. In

files sections only non-maven files (like license texts or documentation

files) need to be listed, everything Macen-specific is handled

automatucally.

Advantages

Simpler, more readable packages

Easier and faster packaging and updates

Better quality packages

Reduced metadata redundancy

No modifications to Maven

Changes in guidelines are easier to introduce2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Advantages

From previous examples its clear that the new way of packaging Maven

artifacts has numerous advantages.

Easier Maven maintenance

Maven diff
0001-Add-plugin-api-deps.patch | 28 --

0001-Customize-compiler-plugin.patch | 104 ------

0002-Use-custom-resolver.patch | 224 -------------

0003-Use-utf-8-source-encoding.patch | 24 --

...-scope-skipping-with-maven.test.skip.patch | 160 ---------

...ompiler-plugin-default-to-source-1.5.patch | 33 --

JavadirWorkspaceReader.java | 198 -----------

MavenJPackageDepmap.java | 313 ------------------

maven-empty-dep.jar | Bin 341 -> 0 bytes

maven-empty-dep.pom | 9 -

maven-script-local | 47 ---

maven-script-rpmbuild | 93 ------

maven.spec | 269 +++------------

repo-metadata.tar.xz | Bin 3028 -> 0 bytes

14 files changed, 37 insertions(+), 1465 deletions(-)

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Easier Maven maintenance

All Fedora-specific Maven customizations could be removed, which

means much easier Maven maintenance in Fedora.

Build description of maven-surefire in F-12

%if %{with_maven}

export MAVEN_REPO_LOCAL=$(pwd)/.m2/repository

mkdir -p $MAVEN_REPO_LOCAL

cat %{SOURCE4}

mvn-jpp -e -Dmaven.repo.local=$MAVEN_REPO_LOCAL \

-Dmaven2.jpp.depmap.file=%{SOURCE4} \

-Dmaven.test.skip=true install

for dir in maven-surefire-plugin maven-surefire-report-plugin \

surefire-api surefire-booter surefire-providers/surefire-junit; do

(cd $dir

mvn-jpp -Dmaven.repo.local=$MAVEN_REPO_LOCAL \

-Dmaven2.jpp.depmap.file=%{SOURCE4} \

javadoc:javadoc

)

done

%else

mkdir -p lib

build-jar-repository -s -p lib classworlds junit plexus/utils

ant -Dmaven.mode.offline=true

cp -p target/*jar ../lib/$project.jar

%endif

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Build description of maven-surefire in F-12

That’s how the build section of an example spec file used to look like in

Fedora 12.

Build description of maven-surefire in F-15

tests turned off because they need jmock

mvn-rpmbuild -e \

-Dmaven.local.depmap.file=%{SOURCE1} \

-Dmaven.test.skip=true \

install javadoc:aggregate
2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Build description of maven-surefire in F-15

That’s how build section of the same package used to look in Fedora 15.

Build description of maven-surefire in F-19

%mvn_build -f

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Build description of maven-surefire in F-19

And that’s Fedora 19. This example speaks for itself.

Simplified package

maven-surefire diff between F-12 and F-18
.cvsignore | 3 -

.gitignore | 14 +

Makefile | 21 --

maven-surefire-2.3-junit4-pom.patch | 11 -

maven-surefire-booter-build.xml | 64 -----

maven-surefire-build.xml | 90 ------

maven-surefire-buildonlyjunit3.patch | 13 -

maven-surefire-buildskiptestng.patch | 12 -

maven-surefire-jpp-depmap.xml | 23 --

maven-surefire-plexus12.patch | 20 --

maven-surefire.spec | 399 +++++++--------------------

sources | 3 +-

12 files changed, 117 insertions(+), 556 deletions(-)2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Simplified package

Packaging of multi-artifact packages was simplified considerably. This

can be seen in an example difference between Fedora 12 and Fedora 19

package.

Disadvantages

Harder to debug

Incompatibility with older systems

Bleeding edge

2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Disadvantages

XMvn as any solution solution has its disadvantages too, but it’s believed

that all the advantages surpass them.

Future

Automated package generation

Debugging tools

Graphical tooling

Support for more types of artifacts

Integration with Eclipse

Adoption by different distributions?2
0
1
3
-0
2
-0
6

(R)evolution of Java packaging in GNU/Linux

New Maven Packaging Approach

Future

Any software that is useful has to be changed, so hopefully XMvn future

will bring many changes.

