faddord®
odord

(R)evolution of Java packaging in GNU/Linux (Rjvolution of Jaua packagingin GNU/Linux (R)evolution of Java packaging in GNU/Linux Why s ther a problem i th frs ploce?

a < Overview R ———
[a\] hola | izdebskEred o h Java roblems
OI : OI S of proplems
a0 ™ . . . e
§ § LWhy is there a problem in the first place?

it ey mgrodietion. T fave been weddug - zvey Maven paceg NIH - distributions, java developers, everyone is guilty. If we manage to

for Fedora and Red Hat Enterprise Linux for several years. We like to

make things simple(r). provide a proper tooling a lot of things will get better as a result

eventually.

odifications in Fedora

(R)evolution of Java packaging in GNU/Linux (R)evolution of Java packaging in GNU/Linux

O . Maven is the only widely-used Java build tool with O .
< L-Overview any rsembance of conventrs < I—Hlstory lessons oo rsler e i ot mode
(o} , N Verification of models turned off in local mode
OI OI Fi Slhs‘(zpedependen(yveso\vmgwhentes(s
= L First things first = L—Maven modifications in Fedora e
N N
Most things are very similar. But there are exceptions: . .
& y P Maven and Java stack largely based on JPP. It is our heritage, but we are
e Not all metadata is 1:1 L .
changing it bit by bit. Our patches are not very welcome by the

e No exclusions in RPMs . )
upstream, but we are getting rid of them.

e No equivalent of Maven scope in RPMs

e Parent pom inheritance missing

e Optional dependencies

The problem with other build systems is that there is no way to
standardize parsing and handling of their metadata. They can be spread

in many places.



(R)evolution of Java packaging in GNU/Linux

I—History lessons

LGetting rid of cruft

2013-02-06

These snippets used to produce one big mapping file out of small xml-like
files created by every Maven package. Maven then read this one big file.
We moved to reading those small files and with this we didn't have to

create the big file any more. Performance hit is negligible.

(R)evolution of Java packaging in GNU/Linux [r——

I—History lessons

L—Modifications of pom.xml

2013-02-06

There are other macros:
e adding/removing dependencies
e modifying plugins

e injecting/removing any xml parts

All in all they simplify updates and are more reliable than patches since

they know about XML structure

(R)evolution of Java packaging in GNU/Linux e
I—History lessons

LFixing manual mapping for GAVs

2013-02-06

This has been achieved by reading metadata from pom.xml instead of
relying on manual inspection. We managed to get rid of a lot of errors

this way

(R)evolution of Java packaging in GNU//Linux s

I—History lessons

L File lists

2013-02-06

These file lists are relatively limited in that they only handle files that
%add_maven_depmap macro knows about: poms, jars, mapping files.

They still simplify spec files considerably



° (R)evolution of Java packaging in GNU/Linux G

a I—History lessons

<

o

= L—Current state

(q\]
Maintenance of multiple subpackages is always a burden. Dependencies
get more complicated, spec files are much longer and their updates more
error-prone.

o (R)evolution of Java packaging in GNU/Linux

Z L New Maven Packaging Approach

<

g LA tool is needed

N

As shown in previous exmaples, currect situation of packaging of Maven
artifacts in Fedora requires a new tool. A tool that would be simple to
use, doing most of the tasks for users. It should be powerfull enough to
allow migration of all possible spec files to the new style of packaging,
not only some of them. It should also utilize the convention over
configuration rule so that most simple packages have the simpliest specx
files possible, but more complicated cases can be handled with

customizations.

2013-02-06

2013-02-06

(R)evolution of Java packaging in GNU/Linux
I—History lessons

- Plexus-compiler example

Maintenance of multiple subpackages is burdensome so it's not done
usually. This causes issues when one of the artifacts pulls in big
dependency tree. This is a recurring problem we need to solve. One of
more recent examples was Freemind which pulled in big part of

eclipse-platform in Fedora.

(R)evolution of Java packaging in GNU/Linux
L New Maven Packaging Approach

L Structure of XMvn

XMvn consists of two parts, portable part and distribution-specific part.
The first one is written in pure Java. It is a set of extensions to
(otherwise unmodified) Apache Maven and is licensed in consistent way
with Maven (the license is Apache License version 2.0). The portable
part has many configuration options and it tries not to rely on any
distribution-specific characteristics, so it should be possible to use it on
any GNU/Linux or Unix distribution.

The distribution-specific part forms an interface between the way how
packages are built in distributions and the portable part. For this part is
implemented only for Fedora, but different layers could be created for
different distributions, also those not based on RPM. Among other things
this part is responsible for keeping distribution-specific defaults and

automatic dependencies are generated.



2013-02-06

2013-02-06

(R)evolution of Java packaging in GNU/Linux [
L New Maven Packaging Approach

LPreparation for the build

Before the actual build is started POM files are patched using new
Macros if needed, but usually that step is not required. Next the build
process is configured using simple macros and the portable part of XMvn

is launched.

(R)evolution of Java packaging in GNU/Linux o
L New Maven Packaging Approach

L After the build

After build is finished all relevant files are installed into the build root and
lists of installed files are created. These lists are then used to let RPM

know which file belongs to which package.

2013-02-06

2013-02-06

(R)evolution of Java packaging in GNU/Linux o
L New Maven Packaging Approach

LDuring build

During the build the configuration is read and the build plan is created.
XML metadatata of all Maven packages installed in the file system is
read and Maven is invoked to perform the build. After Maven completes

the build metadata of currently built packages is generated.

(R)evolution of Java packaging in GNU/Linux
L New Maven Packaging Approach

A typical RPM spec file for package built using XMvn consists of
standard package metadata (name, version, etc.), there are not even

requires, only build requires.



2013-02-06

2013-02-06

(R)evolution of Java packaging in GNU/Linux

L New Maven Packaging Approach

Build and install sections are usually very simple, possiblt single-line. In
files sections only non-maven files (like license texts or documentation
files) need to be listed, everything Macen-specific is handled

automatucally.

(R)evolution of Java packaging in GNU/Linux
L New Maven Packaging Approach

L Easier Maven maintenance

All Fedora-specific Maven customizations could be removed, which

means much easier Maven maintenance in Fedora.

2013-02-06

2013-02-06

(R)evolution of Java packaging in GNU/Linux s
L New Maven Packaging Approach

LAdvantages

From previous examples its clear that the new way of packaging Maven

artifacts has numerous advantages.

(R)evolution of Java packaging in GNU/Linux
L New Maven Packaging Approach

L Build description of maven-surefire in F-12

That's how the build section of an example spec file used to look like in

Fedora 12.



(R)evolution of Java packaging in GNU/Linux rep— (R)evolution of Java packaging in GNU/Linux re—

g New Maven Packaging Approach g New Maven Packaging Approach
o o
g L Build description of maven-surefire in F-15 g L Build description of maven-surefire in F-19
(q\] N
That's how build section of the same package used to look in Fedora 15. And that's Fedora 19. This example speaks for itself.
© (R)evolution of Java packaging in GNU/Linux fr— © (R)evolution of Java packaging in GNU/Linux -
z L New Maven Packaging Approach i : 2 L New Maven Packaging Approach
S @
= L Simplified package = L Disadvantages e
N N
Packaging of multi-artifact packages was simplified considerably. This XMvn as any solution solution has its disadvantages too, but it's believed
can be seen in an example difference between Fedora 12 and Fedora 19 that all the advantages surpass them.

package.



Automated package generation
Debugging tools

 Graphical tooling

* Support for more types of artifacts

* Integration with Eclipse

* Adoption by different distributions?




