
Java Packaging for Developers
(Get someone to package your Java application)

Red Hat

Author: Stanislav Ochotnický

Date: 5th February 2011

Abstract

Basic guidelines for developers to make it easier for their
applications to get into Linux distributions. Handling source
releases, build systems and dependencies and making
packagers happy in the process.

Main audience: Java developers with little packaging
experience.

Copyright © 2011 Author: Stanislav Ochotnický, Red Hat.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

Agenda

1 Overview

2 General Tips
Releases and dependencies
Version numbers and microrevisions

3 Buildsystem specific
Ant
Maven

Overview

Overview of problems

Linux packaging rules

Build everything from source

No bundled dependencies

Keep compatibility in released
distributions

Keep FHS compliance if
possible

Java style

Binary-only releases

Bundling deps even in source
releases

No notion of binary
compatibility

One directory contains whole
application

There are reasons Linux distributions have strict rules

Bundling causes security problems

Building from source ensures ability to fix bugs quickly

General Tips Releases and dependencies

Releases and dependencies

Don’t add another xml parser dep just because you can

Try to pick dependencies from major projects

Make complete source releases with build scripts

Results of no source releases
latest release doesn't generate javadocs and there is no source

tarball with pom.xml or ant build file

#

svn export -r86 http://atinject.googlecode.com/svn/trunk atinject-1

tar caf atinject-1.tar.xz atinject-1

General Tips Releases and dependencies

Using maven-assembly-plugin to release source

<build>

<plugins>

...

<plugin>

<artifactId>maven-assembly-plugin</artifactId>

<configuration>

<descriptorRefs>

<descriptorRef>project</descriptorRef>

</descriptorRefs>

</configuration>

<executions>

<execution>

<id>make-assembly</id>

<phase>package</phase>

<goals> <goal>single</goal> </goals>

</execution>

</executions>

</plugin>

...

</plugins>

</build>

General Tips Version numbers and microrevisions

Z, oh where are thou?

What are micro revisions?

Z in X.Y.Z version string

Micro revisions are smallest released changes for projects

Usually contain only bugfixes

ALWAYS backward compatible

Java ecosystem understanding of Z in X.Y.Z

Anything goes (for a LOT of projects)

Binary compatibility does not matter in Java a

aIt’s actually more important because it’s impossible to figure out if the
dependant library is compatible. That is because missing/changed methods will
show up only during runtime!

General Tips Version numbers and microrevisions

Z, oh where are thou? (cont.)

Example Maven update from 3.0 to 3.0.1

Required Aether update from 1.7 to 1.8

Aether added new dependency on async-http-client

Async-http-client had netty, jetty 7.x and other new deps

Fortunately only netty was runtime dependency

How to do it?

Z updates contain only backward-compatible bugfixes

No changes to dependencies

Check required dependency update for new dependencies

Buildsystem specific Ant

How to use Ant properly?

Short answer?

DON’T
Long answer

Try apache-ivy instead of bundling dependencies

Use properties to reuse definitions

Place all dependencies into one directory (preferably lib)

Use name-version.jar for dependencies

Don’t be overly smart when writing build.xml

Worst case: maven-antrun-plugin

Buildsystem specific Maven

Advantages of Maven over Ant

For developers

Declarative instead of descriptive

Project metadata information in one place

Good integration with other tools

Support for running Ant for parts of build (if needed)

For packagers

Declarative instead of descriptive

Clear dependencies including their versions

No bundling of dependencies

Problems are the same in all projects

Buildsystem specific Maven

Maven woes

It’s not easy to make a mess, but...

Sometimes too easy to add new dependency

Use maven-dependency-plugin:copy-dependencies carefully
Use maven-bundle-plugin carefully

Useful for metadata manipulations
Export-Package can include dependencies in resulting jar
This is practically static linking

Please don’t use maven-shade-plugin
Relocates package classes into different package
Hidden static linking
Impossible to reveal just from contents of jar

Buildsystem specific Maven

maven-shade-plugin in action

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<configuration>

<relocations>

<relocation>

<pattern>org.objectweb.asm</pattern>

<shadedPattern>org.packager</shadedPattern>

</relocation>

</relocations>

</configuration>

</plugin>

Buildsystem specific Maven

maven-shade-plugin in action (cont.)

Contents of resulting jar

META-INF/

META-INF/MANIFEST.MF

META-INF/maven/

META-INF/maven/org.packager/

META-INF/maven/org.packager/Pack/

META-INF/maven/org.packager/Pack/pom.properties

META-INF/maven/org.packager/Pack/pom.xml

org/

org/packager/

org/packager/signature/

org/packager/signature/SignatureReader.class

org/packager/signature/SignatureVisitor.class

org/packager/signature/SignatureWriter.class

org/packager/Pack.class

Can you tell where is signature sub-package coming from?

Buildsystem specific Maven

maven-bundle-plugin in action (cont.)

<plugin>

<groupId>org.apache.felix</groupId>

<artifactId>maven-bundle-plugin</artifactId>

<extensions>true</extensions>

<configuration>

<instructions>

<Export-Package>org.objectweb.asm.signature</Export-Package>

</instructions>

</configuration>

</plugin>

Buildsystem specific Maven

maven-bundle-plugin in action (cont.)

Contents of resulting jar

META-INF/MANIFEST.MF

META-INF/

META-INF/maven/

META-INF/maven/org.packager/

META-INF/maven/org.packager/Pack/

META-INF/maven/org.packager/Pack/pom.properties

META-INF/maven/org.packager/Pack/pom.xml

org/

org/objectweb/

org/objectweb/asm/

org/objectweb/asm/signature/

org/objectweb/asm/signature/SignatureReader.class

org/objectweb/asm/signature/SignatureVisitor.class

org/objectweb/asm/signature/SignatureWriter.class

org/packager/

org/packager/Pack.class

Buildsystem specific Maven

Summary

Please

Provide source releases with build scripts

Do not use niche libraries for dependencies

Give us stable, bugfix-only, no-new-deps micro releases

If you want ant, try apache-ivy and don’t be too smart

Careful with certain maven plugins

The end.
Thanks for listening.

	Overview
	General Tips
	Releases and dependencies
	Version numbers and microrevisions

	Buildsystem specific
	Ant
	Maven

